Deteksi dan Penghitung Keramaian Menggunakan You Only Look Once 3 Tiny dan Raspberry Pi

Authors

  • Alauddin Maulana Hirzan Universitas Semarang
  • Rastri Prathivi Universitas Semarang
  • Mohammad Burhan Hanif Universitas Semarang

DOI:

10.51519/journalcisa.v4i3.417

Keywords:

Computer Vision, Internet of Things, Keramaian, You Only Look Once 3

Abstract

Keramaian adalah aspek sosial yang tidak bisa dipisahkan dari masyarakat. Baik untuk keperluan bersosialisasi hingga menyampaikan suara melalui demonstrasi, masyarakat akan membentuk keramaian untuk mencapai tujuan tersebut. Keramaian ini tentu saja memiliki dampak positif, namun tetap memiliki dampak negatif berupa kemungkinan terjadinya provokasi dan membentuk anarkisme. Oleh karena itu banyak penelitian yang memiliki fokus untuk melakukan deteksi keramaian. Namun sayangnya, penelitian yang telah dilakukan ini memiliki kelemahan di mana model yang dibuat tidak mampu melakukan deteksi jarak antar satu manusia dengan manusia lainnya. Untuk mengatasi permasalahan tersebut, penelitian ini mendesain sebuah model deteksi menggunakan YOLOv3-Tiny yang diimplementasikan ke dalam perangkat Internet of Things. Dari proses pengujian menggunakan 60 gambar dengan resolusi yang berbeda. Pengujian ini berhasil mendeteksi keramaian dan jarak antar manusianya. Model ini membutuhkan CPU sebanyak 76,22%. Untuk memori membutuhkan 454,78MB untuk proses, 405,61MB untuk data, dan 130,94MB untuk memori virtual. Dari hasil ini bisa disimpulkan bahwa model yang diusulkan mampu mendeteksi keramaian dengan baik tanpa mengalami kesalahan karena kurangnya kemampuan komputasi.

References

I. Fathurohman, “Massa BEM SI Aksi Rempang dan Seruyan Dihadang Polisi di Kejagung,” IDN Times, Jakarta, Oct. 13, 2023. Accessed: Oct. 13, 2023. [Online]. Available: https://www.idntimes.com

F. Halim and F. Peace Simbolon, “Demo Buruh di Patung Kuda, Waspada Macet: Arus Lalu Lintas Dialihkan,” VIVAnews, Jakarta, Oct. 02, 2023. Accessed: Oct. 13, 2023. [Online]. Available: https://www.viva.co.id

A. Hamapu, “Warga Demo Tolak Relokasi saat Menteri Bahlil ke Rempang Batam,” detikNews, Kepulauan Riau, Oct. 06, 2023. Accessed: Oct. 13, 2023. [Online]. Available: https://www.detik.com

I. Fathurohman, “Polisi Bersenjata Gas Air Mata Hadang Mahasiswa di Depan Kejagung,” IDN Times, Jakarta, Oct. 13, 2023. Accessed: Oct. 13, 2023. [Online]. Available: https://www.idntimes.com

H. B Alexander, “Macet Panjang 3 Kilometer di GT Jatikarya, Pengelola: Dampak Demo Warga Ahli Waris Lahan,” Kompas, Jakarta, 20222-10-07. Accessed: Oct. 14, 2023. [Online]. Available: https://www.kompas.com

E. Dyah Fitriani, “Kecam Demo Ricuh di Seruyan Tewaskan Warga, Komisi III DPR: Polisi Gegabah,” detikNews, Jakarta, Oct. 10, 2023. Accessed: Oct. 13, 2023. [Online]. Available: https://news.detik.com

C. Liu et al., “The impact of crowd gatherings on the spread of COVID-19,” Environ. Res., vol. 213, p. 113604, 2022, doi: https://doi.org/10.1016/j.envres.2022.113604.

F. H. Utkarsh Singh Jean-François Determe and P. D. Doncker, “Crowd Monitoring: State-of-the-Art and Future Directions,” IETE Tech. Rev., vol. 38, no. 6, pp. 578–594, 2021, doi: 10.1080/02564602.2020.1803152.

J. R. Santana, L. Sánchez, P. Sotres, J. Lanza, T. Llorente, and L. Muñoz, “A Privacy-Aware Crowd Management System for Smart Cities and Smart Buildings,” IEEE Access, vol. 8, pp. 135394–135405, 2020, doi: 10.1109/ACCESS.2020.3010609.

M. Mu, “WiFi-based Crowd Monitoring and Workspace Planning for COVID-19 Recovery.” arXiv, 2020. doi: 10.48550/ARXIV.2007.12250.

M. Ahmad, I. Ahmed, K. Ullah, and M. Ahmad, “A Deep Neural Network Approach for Top View People Detection and Counting,” in 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), Oct. 2019, pp. 1082–1088. doi: 10.1109/UEMCON47517.2019.8993109.

I. Ahmed, M. Ahmad, A. Ahmad, and G. Jeon, “IoT-based crowd monitoring system: Using SSD with transfer learning,” Comput. Electr. Eng., vol. 93, p. 107226, 2021, doi: https://doi.org/10.1016/j.compeleceng.2021.107226.

A. C. Cob-Parro, C. Losada-Gutiérrez, M. Marrón-Romera, A. Gardel-Vicente, and I. Bravo-Muñoz, “Smart Video Surveillance System Based on Edge Computing,” Sensors, vol. 21, no. 9, 2021, doi: 10.3390/s21092958.

M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and M. Guizani, “Edge and fog computing for IoT: A survey on current research activities & future directions,” Comput. Commun., vol. 180, pp. 210–231, 2021, doi: https://doi.org/10.1016/j.comcom.2021.09.003.

S. Armalivia, Z. Zainuddin, A. Achmad, and Muh. A. Wicaksono, “Automatic Counting Shrimp Larvae Based You Only Look Once (YOLO),” in 2021 International Conference on Artificial Intelligence and Mechatronics Systems (AIMS), Apr. 2021, pp. 1–4. doi: 10.1109/AIMS52415.2021.9466058.

Z.-F. Xu, R.-S. Jia, Y.-B. Liu, C.-Y. Zhao, and H.-M. Sun, “Fast Method of Detecting Tomatoes in a Complex Scene for Picking Robots,” IEEE Access, vol. 8, pp. 55289–55299, 2020, doi: 10.1109/ACCESS.2020.2981823.

V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge, “Real-Time Apple Detection System Using Embedded Systems With Hardware Accelerators: An Edge AI Application,” IEEE Access, vol. 8, pp. 9102–9114, 2020, doi: 10.1109/ACCESS.2020.2964608.

K. M and K. P. R, “Comparative Analysis of YOLOv3-320 and YOLOv3-tiny for the Optimised Real-Time Object Detection System,” in 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM), Apr. 2022, pp. 495–500. doi: 10.1109/ICIEM54221.2022.9853186.

Q. Xu and J. Zhang, “piFogBed: A Fog Computing Testbed Based on Raspberry Pi,” in 2019 IEEE 38th International Performance Computing and Communications Conference (IPCCC), Oct. 2019, pp. 1–8. doi: 10.1109/IPCCC47392.2019.8958741.

W. Wingerath, N. Ritter, and F. Gessert, “Real-Time Databases,” in Real-Time & Stream Data Management: Push-Based Data in Research & Practice, W. Wingerath, N. Ritter, and F. Gessert, Eds., Cham: Springer International Publishing, 2019, pp. 21–41. doi: 10.1007/978-3-030-10555-6_3.

R. Kesavan, D. Gay, D. Thevessen, J. Shah, and C. Mohan, “Firestore: The NoSQL Serverless Database for the Application Developer,” in 2023 IEEE 39th International Conference on Data Engineering (ICDE), 2023, pp. 3367–3379.

Y. Sukmana and Y. Rosmansyah, “The Use of Cloud Firestore For Handling Real-time Data Updates: An Empirical Study of Gamified Online Quiz,” in 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT), Dec. 2021, pp. 1239–1244. doi: 10.1109/CECIT53797.2021.00220.

Downloads

Published

2023-11-10

How to Cite

Hirzan, A. M., Prathivi, R., & Hanif, M. B. (2023). Deteksi dan Penghitung Keramaian Menggunakan You Only Look Once 3 Tiny dan Raspberry Pi. Journal of Computer and Information Systems Ampera, 4(3), 184–196. https://doi.org/10.51519/journalcisa.v4i3.417