Measuring Throughput and Latency Distributed Ledger Technology: Hyperledger

Authors

  • Riko Herwanto Darmajaya Institute of Informatics and Business
  • Hari Sabita Darmajaya Institute of Informatics and Business
  • Fajrin Armawan Darmajaya Institute of Informatics and Business

DOI:

10.51519/journalita.volume2.isssue1.year2021.page17-31

Keywords:

: Blockchain, Hyperledger, Latency, MySQL, Throughput

Abstract

In this paper, we report the measuring outcomes of Hyperledger, a Distributed Ledger, which is the derivation Blockchain Technology. A technique to evaluate Hyperledger in a limited infrastructure is developed. The measured infrastructure consists of 8 nodes with a load of up to 20000 transactions/second. Hyperledger constantly runs all evaluation, namely, for 20,000 transactions, the run time 74.30s, latency 73.40ms latency, and 257 tps. This initial evaluation can provide an overview for practitioners in making choices about the adoption of blockchain technology in their IT systems.

References

Androulaki E, Barger A, Bortnikov V, Cachin C, Christidis K, De Caro A, Enyeart D, Ferris C, Laventman G, Manevich Y, Muralidharan S. Hyperledger fabric: a distributed operating system for permissioned blockchains. Proceedings of the Thirteenth EuroSys Conference. Porto, Portugal. 2018; p. 30.

H. Sukhwani, N. Wang, K. S. Trivedi and A. Rindos. Performance Modeling of Hyperledger Fabric (Permissioned Blockchain Network). 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA). Cambridge, MA. 2018: pp. 1-8.

Walport M. Distributed ledger technology: Beyond blockchain. UK Government Office for Science. Tech. Rep; 2016.

Davidson S, De Filippi P, Potts J. Disrupting governance: The new institutional economics of distributed ledger technology. 2016.

Chishti S, Barberis J. The FinTech book: the financial technology handbook for investors, entrepreneurs and visionaries. New York. John Wiley & Sons; 2016.

Cunningham J, Ainsworth J. Enabling patient control of personal electronic health records through distributed ledger technology. Stud Health Technol Inform. 2018; 245: 45-48.

Genkin D, Papadopoulos D, Papamanthou C. Privacy in decentralized cryptocurrencies. Communications of the ACM. 2018; 61(6):78-88.

Kocsis I, Pataricza A, Telek M, Klenik A, Deé F, Cseh D. Towards Performance Modeling of Hyperledger Fabric. InInternational IBM Cloud Academy Conference (ICACON). 2017.

D. Chays and Yuetang Deng, Demonstration of AGENDA tool set for testing relational database applications. Proceedings of 25th International Conference on Software Engineering, 2003. Portland, OR, USA. 2003: pp. 802-803.

R. Yasaweerasinghelage, M. Staples and I. Weber. Predicting Latency of Blockchain-Based Systems Using Architectural Modelling and Simulation. 2017 IEEE International Conference on Software Architecture (ICSA), Gothenburg. 2017: pp. 253-256.

Rauchs M, Glidden A, Gordon B, Pieters GC, Recanatini M, Rostand F, Vagneur K, Zhang BZ. Distributed ledger technology systems: a conceptual framework. Cambridge, UK. 2018.

Qassim Nasir, Ilham A. Qasse, Manar Abu Talib, and Ali Bou Nassif. Performance Analysis of Hyperledger Fabric Platforms. Security and Communication Networks, vol. 2018, Article ID 3976093, 14 pages, 2018

Gaur N, Desrosiers L, Ramakrishna V, Novotny P, Baset SA, O'Dowd A. Hands-On Blockchain with Hyperledger: Building decentralized applications with Hyperledger Fabric and Composer. Packt Publishing Ltd; 2018.

A. Baliga, N. Solanki, S. Verekar, A. Pednekar, P. Kamat and S. Chatterjee, Performance Characterization of Hyperledger Fabric. 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), Zug. 2018; pp. 65-74.

White B, Lepreau J, Stoller L, Ricci R, Guruprasad S, Newbold M, Hibler M, Barb C, Joglekar A. An integrated experimental environment for distributed systems and networks. Proceedings of the 5th symposium on Operating systems design and implementation. Boston, Massachusetts. 2002;36(SI):255-270.

Buchman E. Tendermint: byzantine fault tolerance in the age of blockchains. MA thesis. Department Engineering Systems and Computing. University of Guelph. Ontario, Canada. 2016.

Dhillon V, Metcalf D, Hooper M. The hyperledger project. In Blockchain enabled applications. Apress, Berkeley, CA. 2017: 139-149

Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2008

Nasir Q, Qasse IA, Abu Talib M, Nassif AB. Performance analysis of hyperledger fabric platforms. Security and Communication Networks. Vol. 2018; 14.

Cachin C. Architecture of the hyperledger blockchain fabric. In Workshop on distributed cryptocurrencies and consensus ledgers. 2016:. 310: 4-11.

C. Decker and R. Wattenhofer. Information propagation in the Bitcoin network. IEEE P2P 2013 Proceedings, Trento, 2013, pp. 1-10.

Cunningham J, Ainsworth J. Enabling patient control of personal electronic health records through distributed ledger technology. Stud Health Technol Inform. 2018; 245:45-8.

Genkin D, Papadopoulos D, Papamanthou C. Privacy in decentralized cryptocurrencies. Communications of the ACM. 2018; 61(6):78-88.

Bolze R, Cappello F, Caron E, Daydé M, Desprez F, Jeannot E, Jégou Y, Lanteri S, Leduc J, Melab N, Mornet G. Grid'5000: A large scale and highly reconfigurable experimental grid testbed. The International Journal of High Performance Computing Applications. 2006; (4):481-494.

Croman K, Decker C, Eyal I, Gencer AE, Juels A, Kosba A, Miller A, Saxena P, Shi E, Sirer EG, Song D. On scaling decentralized blockchains. In International Conference on Financial Cryptography and Data Security 2016). Springer, Berlin, Heidelberg. 2016; 106-125.

Maull R, Godsiff P, Mulligan C, Brown A, Kewell B. Distributed ledger technology: Applications and implications. Strategic Change. 2017; 26(5): 481-489.

N. Papadis, S. Borst, A. Walid, M. Grissa and L. Tassiulas. Stochastic Models and Wide-Area Network Measurements for Blockchain Design and Analysis. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. Honolulu, HI. 2018; pp. 2546-2554.

Sajana P, Sindhu M, Sethumadhavan M. On Blockchain Application: Hyperledger Fabric and Ethereum. International Journal of Pure and Applied Mathematics. 2018;118(18): 2965-2970.

S. Pongnumkul, C. Siripanpornchana and S. Thajchayapong. Performance Analysis of Private Blockchain Platforms in Varying Workloads. 2017 26th International Conference on Computer Communication and Networks (ICCCN). Vancouver, BC. 2017; pp. 1-6.

P. Thakkar, S. Nathan and B. Viswanathan, Performance Benchmarking and Optimizing Hyperledger Fabric Blockchain Platform, IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS). Milwaukee, WI. 2018; pp. 264-276.

Dinh TT, Wang J, Chen G, Liu R, Ooi BC, Tan KL. Blockbench: A framework for analyzing private blockchains. Proceedings of the 2017 ACM International Conference on Management of Data. 2017; pp. 1085-1100

Downloads

Published

2021-07-28

How to Cite

Herwanto, R., Sabita, H., & Armawan, F. (2021). Measuring Throughput and Latency Distributed Ledger Technology: Hyperledger. Journal of Information Technology Ampera, 2(1), 17–31. https://doi.org/10.51519/journalita.volume2.isssue1.year2021.page17-31