Pemanfaatan Data Mining Dalam Memprediksi Kasus Positif Covid-19 Di Kota Palembang Menggunakan Algoritma K-Nearest Neighbors

Authors

  • Yulianita Purnamasari Universitas Bina Darma
  • Yessi Novaria Kunang Universitas Bina Darma

DOI:

10.51519/journalsea.v2i2.128

Keywords:

K-Nearest Neighbors, Covid-19, Prediction, RapidMiner, Knowladge Discovery in Database

Abstract

Covid-19 was first detected in Indonesia in early March 2020. The province of South Sumatra has more than 20,000 confirmed cases of Covid-19, 15,914 from Palembang City. The Covid-19 pandemic still shows no signs of ending. This can be seen from the increase in positive cases of Covid-19 every day. In making decisions on policies and decisions related to handling Covid-19, positive cases are still an important influence in this regard. Therefore, it focuses on predicting positive cases of Covid-19 in Palembang City. The data used in this study are data taken from the official website of the Palembang City Health Office as many as 153 data with 14 parameters. From 153 data, it is divided into 80% training data and 20% testing data. The variable used in this study is the daily number of confirmed cases of Covid-19 in Palembang City. KNN is used as a model to make predictions. From the research conducted, the RMSE results were 209,362. The results of this prediction can be used as input for research related to the prediction of positive cases of Covid19 in the city of Palembang.

References

Anggraini, S., Akbar, M., Wijaya, A., Syaputra, H., & Sobri, M. (2021). Klasifikasi Gejala Penyakit Coronavirus Disease 19 (COVID-19) Menggunakan Machine Learning. Journal of Software Engineering Ampera, 2(1), 57-68.

Susilo, A. et al. (2020) ‘Coronavirus Disease 2019: Tinjauan Literatur Terkini’, Jurnal Penyakit Dalam Indonesia, 7(1), p. 45. doi: 10.7454/jpdi.v7i1.415.

Arianto, D. and Noviyanti Pui (2020) ‘PREDIKSI KASUS COVID-19 DI INDONESIA MENGGUNAKAN METODE BACKPROPAGATION DAN FUZZY TSUKAMOTO’. doi: 10.13140/RG.2.2.34286.02885.

Joyosemito, I. S. and Nasir, N. M. (2021) ‘Pendekatan Pemodelan Matematika Dinamis Dalam Analisis Prediksi COVID-19 Sebagai Masukan Kebijakan Pemerintah Indonesia’, p. 16.

Andri, A., Kunang, Y. N., & Murniati, S. (2015, July). Implementasi Teknik Data Mining Untuk Memprediksi Tingkat Kelulusan Mahasiswa Pada Universitas Bina Darma Palembang. In Seminar Nasional Informatika (SEMNASIF) (Vol. 1, No. 1).

Mulyati, S., Husein, S. M. and Ramdhan, R. (2020) ‘RANCANG BANGUN APLIKASI DATA MINING PREDIKSI KELULUSAN UJIAN NASIONAL MENGGUNAKAN ALGORITMA (KNN) K-NEAREST NEIGHBOR DENGAN METODE EUCLIDEAN DISTANCE PADA SMPN 2 PAGEDANGAN’, JIKA (Jurnal Informatika), 4(1), p. 65. doi: 10.31000/jika.v4i1.2288

Kurniawan, Y. I., & Barokah, T. I. (2020). Klasifikasi Penentuan Pengajuan Kartu Kredit Menggunakan K-Nearest Neighbor. Jurnal Ilmiah Matrik, 22(1), 73-82.

Madyaningrum, N.A. (2019b) ‘ANALISA PREDIKSI KEKAMBUHAN KANKER PAYUDARA DENGAN MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR’, p. 6.

Sumarlin, S., & Anggraini, D. (2019). IMPLEMENTASI K-NEAREST NEIGHBORD PADA RAPIDMINER UNTUK PREDIKSI KELULUSAN MAHASISWA. High Education of Organization Archive Quality: Jurnal Teknologi Informasi, 10(1), 35-41.

Downloads

Published

2021-06-30

How to Cite

Purnamasari, Y., & Kunang, Y. N. (2021). Pemanfaatan Data Mining Dalam Memprediksi Kasus Positif Covid-19 Di Kota Palembang Menggunakan Algoritma K-Nearest Neighbors. Journal of Software Engineering Ampera, 2(2), 118–128. https://doi.org/10.51519/journalsea.v2i2.128