Implementasi Data Mining Untuk Menentukan Pola Penyebab Kecelakaan Lalu Lintas Di Wilayah Kota Palembang Menggunakan Algoritma FP-Growth

Authors

  • Fathan Pangestu Universitas Bina Darma
  • Andri Andri Universitas Bina Darma

DOI:

10.51519/journalsea.v1i2.48

Keywords:

association rules, fp-growth, traffic accident, data mining

Abstract

Palembang City is one of the big cities in Indonesia. Along with the increasing population and the increasing number of motorized vehicles, it will certainly have an impact on the increasing number of traffic accidents in the city of Palembang. In this study, the writer will determine the pattern of traffic accidents by using the fp-growth algorithm and using various variables. The variables that will be used consist of weather, time of incident, road geometry, profession, level of injury. This research is expected to be a reference for the police to be able to take anticipatory measures in order to reduce the number of traffic accidents in the Palembang City area. The fp-growth algorithm can be applied properly to determine the pattern of the causes of traffic accidents in the city of Palembang by using 2 minimum support of 40% and 50% and 2 minimum confidence of 70% and 90%. Based on the resulting rules, there are rules with the highest confidence value of 98% with these rules: When an accident occurs with a Side-Side accident type, the accident occurs in sunny weather conditions

References

A. Wijaya, ‘Perbandingan Algoritma Eclat Dan Fp-Growth Pada Penjualan Barang (Studi Kasus: Minimarket 212 Mart Veteran Utama)’, p. 10, 2019.

A. Maulana and A. A. Fajrin, ‘Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor’, klik, vol. 5, no. 1, p. 27, Feb. 2018, doi: 10.20527/klik.v5i1.100.

M. Ridwan and H. Suyono, ‘Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier’, vol. 7, no. 1, p. 6, 2013.

B. A. Tama, ‘Penetapan Strategi Penjualan Menggunakan Association Rules dalam Konteks CRM’, vol. 5, p. 4, 2010.

G. Gunadi and D. I. Sensuse, ‘penerapan metode data mining market basket analysis terhadap data penjualan produk buku dengan menggunakan algoritma apriori dan frequent pattern growth (fp-growth)?: studi kasus percetakan pt. Gramedia’, p. 15, 2012.

Brilian Rahmat C.T.I. et al., ‘Implemetasi K-Clustering Pada Rapidminer Untuk Analisis Daerah Rawan Kecelakaan’, p. 5, 2017.

Downloads

Published

2020-05-25

How to Cite

Pangestu, F., & Andri, A. (2020). Implementasi Data Mining Untuk Menentukan Pola Penyebab Kecelakaan Lalu Lintas Di Wilayah Kota Palembang Menggunakan Algoritma FP-Growth. Journal of Software Engineering Ampera, 1(2), 97–109. https://doi.org/10.51519/journalsea.v1i2.48