Model Deteksi Berita Palsu Menggunakan Pendekatan Bidirectional Long Short Term Memory (BiLSTM)

Authors

  • Ari Muzakir Universitas Bina Darma
  • Uci Suriani Politeknik Darussalam

DOI:

10.51519/journalcisa.v4i2.397

Keywords:

Berita palsu, Embeddings GloVe, Bidirectional Long Short Term Memory (BiLSTM)

Abstract

Isu berita palsu telah menarik perhatian masyarakat dan akademisi. Penyebaran informasi yang tidak akurat berpotensi mengubah pandangan publik dan memungkinkan manipulasi opini. Dalam konteks data yang melimpah, kami mengembangkan model untuk mendeteksi berita palsu dengan mengklasifikasikan fitur linguistik murni. Dengan pendekatan pembelajaran mendalam, kami mengevaluasi respons terhadap artikel tertentu menggunakan model Jaringan Saraf Rekuren Bidirectional Long Short Term Memory (BiLSTM) dan representasi kata dari embeddings GloVe. Hasil evaluasi menunjukkan adaptabilitas model pada data latih dengan kerugian terendah 0.30% dan akurasi tinggi 99.14%. Gabungan antara embeddings GloVe dan Bi-LSTM memunculkan hasil yang positif. Penelitian ini memiliki potensi untuk memberikan kontribusi dalam penanggulangan penyebaran berita palsu yang semakin meresahkan di berbagai bidang.

Author Biography

Ari Muzakir, Universitas Bina Darma

Teknik Informatika

References

R. Oshikawa, J. Qian, and W. Y. Wang, “A survey on natural language processing for fake news detection,” arXiv Prepr. arXiv1811.00770, 2018.

A. Roy, K. Basak, A. Ekbal, and P. Bhattacharyya, “A deep ensemble framework for fake news detection and classification,” arXiv Prepr. arXiv1811.04670, 2018.

H. Jwa, D. Oh, K. Park, J. M. Kang, and H. Lim, “exbake: Automatic fake news detection model based on bidirectional encoder representations from transformers (bert),” Appl. Sci., vol. 9, no. 19, p. 4062, 2019.

R. Yunanto, A. P. Purfini, and A. Prabuwisesa, “Survei Literatur: Deteksi Berita Palsu Menggunakan Pendekatan Deep Learning,” J. Manaj. Inform., vol. 11, no. 2, pp. 118–130, 2021.

A. R. Ahmad and H. R. Murad, “The impact of social media on panic during the COVID-19 pandemic in Iraqi Kurdistan: online questionnaire study,” J. Med. Internet Res., vol. 22, no. 5, p. e19556, 2020.

F. Jin, E. Dougherty, P. Saraf, Y. Cao, and N. Ramakrishnan, “Epidemiological modeling of news and rumors on twitter,” in Proceedings of the 7th workshop on social network mining and analysis, 2013, pp. 1–9.

S. Kumar, R. West, and J. Leskovec, “Disinformation on the web: Impact, characteristics, and detection of wikipedia hoaxes,” in Proceedings of the 25th international conference on World Wide Web, 2016, pp. 591–602.

S. Kwon, M. Cha, and K. Jung, “Rumor detection over varying time windows,” PLoS One, vol. 12, no. 1, p. e0168344, 2017.

N. Ruchansky, S. Seo, and Y. Liu, “Csi: A hybrid deep model for fake news detection,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017, pp. 797–806.

Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in International conference on machine learning, 2014, pp. 1188–1196. doi: 10.48550/arXiv.1405.4053.

A. Muzakir, H. Syaputra, and F. Panjaitan, “A Comparative Analysis of Classification Algorithms for Cyberbullying Crime Detection: An Experimental Study of Twitter Social Media in Indonesia,” Sci. J. Informatics; Vol 9, No 2 Novemb. 2022, Doi: 10.15294/sji.v9i2.35149.

W. Lopez, J. Merlino, and P. Rodriguez-Bocca, “Learning semantic information from Internet Domain Names using word embeddings,” Eng. Appl. Artif. Intell., vol. 94, p. 103823, 2020.

S. Lai, K. Liu, S. He, and J. Zhao, “How to generate a good word embedding,” IEEE Intell. Syst., vol. 31, no. 6, pp. 5–14, 2016.

A. B. Soliman, K. Eissa, and S. R. El-Beltagy, “Aravec: A set of arabic word embedding models for use in arabic nlp,” Procedia Comput. Sci., vol. 117, pp. 256–265, 2017.

S. M. Rezaeinia, A. Ghodsi, and R. Rahmani, “Improving the accuracy of pre-trained word embeddings for sentiment analysis,” arXiv Prepr. arXiv1711.08609, 2017.

M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997.

G. Rao, W. Huang, Z. Feng, and Q. Cong, “LSTM with sentence representations for document-level sentiment classification,” Neurocomputing, vol. 308, pp. 49–57, 2018.

Downloads

Published

2023-05-30

How to Cite

Muzakir, A., & Suriani, U. (2023). Model Deteksi Berita Palsu Menggunakan Pendekatan Bidirectional Long Short Term Memory (BiLSTM). Journal of Computer and Information Systems Ampera, 4(2), 93–105. https://doi.org/10.51519/journalcisa.v4i2.397