Implementasi Business Intelligence Pada Analisis Perkembangan Hasil Pertanian Provinsi Sumatera Selatan
DOI:
https://doi.org/10.51519/journalcisa.v1i3.44Keywords:
Agricultural Products, Business Intelligence, data, Pentaho, VisualAbstract
In the process of data collection of agricultural food products and horticulture consists of several data covering the time, area, area of land, crop yields, and types of plants stored in the form of files with large amounts of data. The large amount of data can cause errors in compiling information for the process of analysis and evaluation for the agriculture department. The analysis process can be faster and more precise by implementing Business intelligence. Business intelligence is a concept and method for managing and analyzing data and facts into more effective information to improve the quality of organizational evaluation and decision-making processes. One form of information that can be provided from the application of business intelligence is a visual dashboard that can help display information that makes it easier to analyze the development of agricultural products efficiently and interactively. Processing data for analysis in this study using the Pentaho application. By implementing Business Intelligence, it is expected to be able to assist the Department of Food Agriculture and Horticulture in South Sumatra Province in analyzing the development of agricultural products
References
Asosiasi Penyelenggara Jasa Internet Indonesia (2017). Hasil Survei Penetrasi dan Perilaku Pengguna Internet Indonesia (tahun 2017). Diaskes 21 Februari 2020, dari https://apjii.or.id/content/read/39/342/Hasil-Survei-Penetrasi-dan-PerilakuPengguna-Internet-Indonesia-2017
Asosiasi Penyelenggara Jasa Internet Indonesia (2018). Hasil Survei Penetrasi dan Perilaku Pengguna Internet Indonesia (tahun 2018). Diaskes 21 Februari 2020, dari https://apjii.or.id/content/read/39/410/Hasil-Survei-Penetrasi-dan-PerilakuPengguna-Internet-Indonesia-2018
Habibu, Taban. (2013). Parallel Data Analytics for Business Intelligence Real-Time Online Analytical Processing (OLAP) For Multi-Core and Cloud Architectures
Hüsemann, B., Lechtenbörger, J., & Vossen, G. (2000). Conceptual data warehouse design (pp. 6-1). Universität Münster. Angewandte Mathematik und Informatik.
Lane, P. (2002). Oracle9i data warehousing guide. Oracle Corporation.
Turban, E., Sharda, R., & Delen, D. (2007). Decision support and business intelligence system. Eight Edition. Upper Saddle River, New Jersey: Pearson Pentice Hall.
Inmon, W. H. (2005). Building the data warehouse. Third Edition. John wiley & sons.
Vercellis, C. (2009). Business intelligence: data mining and optimization for decision making (pp. 1-420). New York: Wiley.
Wijaya, R., & Pudjoatmodjo, B. (2016). Penerapan Extraction-Transformation-Loading (ETL) Dalam Data Warehouse (Studi Kasus: Departemen Pertanian). Jurnal Nasional Pendidikan Teknik Informatika: JANAPATI, 5(2), 61-75.
Yumalia, A., & Indrajit, R. E. (2017). Penerapan Konsep Business Intelligence Untuk Percepatan Penyelesaian Perkara Pada Panmud Perdata Khusus Mahkamah Agung Ri. IKRA-ITH INFORMATIKA: Jurnal Komputer dan Informatika, 1(2), 61-69.
Zikri, A., Adrian, J., Soniawan, A., Azim, R., Dinur, R., & Akbar, R. (2017). Implementasi Business Intelligence untuk Menganalisis Data Persalinan Anak di Klinik Ani Padang dengan Menggunakan Aplikasi Tableau Public. Jurnal Online Informatika, 2(1), 20-24.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Muhammad Danu Riyanda, Suyanto Suyanto

This work is licensed under a Creative Commons Attribution 4.0 International License.