Tinjauan Literatur Sistematis (SLR) untuk Teknologi Wireless dalam Indoor Positioning System

DOI:
10.51519/journalcisa.v5i1.446Keywords:
Pemosisian, Indoor Positioning System, Teknologi WirelessAbstract
Banyak teknik Indoor Positioning System telah dikembangkan untuk meningkatkan estimasi posisi, seperti multilaterasi, trilaterasi, estimasi kuadrat terkecil dan penerapan algoritma Pembelajaran Mesin untuk memprediksi dan memperkirakan posisi. Terlepas dari semua teknik yang digunakan, faktor utama Sistem Pemosisian Dalam Ruangan adalah jenis teknologi apa yang digunakan untuk menentukan lokasi posisi. Dalam penelitian ini kami melakukan tinjauan literatur sistematis (SLR) tentang teknologi Sistem Pemosisian Dalam Ruangan untuk meninjau teknologi apa yang digunakan dan faktor apa saja yang dipertimbangkan ketika memilih teknologi dalam Sistem Pemosisian Dalam Ruangan. SLR telah dilakukan dengan menggunakan metodologi menurut Kitchenham. Kami menemukan total ada lima teknologi yang digunakan dan mengklasifikasikannya ke dalam dua kategori. Terdapat juga tabel perbandingan untuk setiap teknologi yang akan digunakan. Kami berhasil menemukan empat faktor utama dalam memilih suatu teknologi dan menyediakan teknologi yang dipilih berdasarkan faktor-faktor tersebut. Kami berharap hasil ini dapat memberikan kontribusi baik dari sisi akademis untuk penelitian selanjutnya dan dapat menjadi pedoman bagi para praktisi di sisi praktisnya.
References
I. Alexander and G. P. Kusuma, “Predicting Indoor Position Using Bluetooth Low Energy and Machine Learning,” International Journal of Scientific & Technology Research, vol. 8, no. 9, pp. 1661–1667, Sep. 2019, Accessed: Nov. 02, 2022. [Online]. Available: www.ijstr.org
L. Batistic and M. Tomic, “Overview of indoor positioning system technologies,” 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 - Proceedings, pp. 473–478, Jun. 2018, doi: 10.23919/MIPRO.2018.8400090.
Q. H. Nguyen, P. Johnson, T. T. Nguyen, and M. Randles, “Optimized Indoor Positioning for static mode smart devices using BLE,” IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 0–5, 2017.
T. Li, S. Ai, S. Tateno, and Y. Hachiya, “Comparison of Multilateration Methods Using RSSI for Indoor Positioning System,” 2019 58th Annual Conference of the Society of Instrument and Control Engineers of Japan, SICE 2019, pp. 371–375, Sep. 2019, doi: 10.23919/SICE.2019.8859906.
M. H. Rahman, M. A. S. Sejan, and W. Y. Chung, “Multilateration approach for wide range visible light indoor positioning system using mobile CMOS image sensor,” Applied Sciences (Switzerland), vol. 11, no. 16, Aug. 2021, doi: 10.3390/app11167308.
M. E. Rusli, M. Ali, N. Jamil, and M. M. Din, “An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration Technique for Internet of Things (IOT),” Proceedings - 6th International Conference on Computer and Communication Engineering: Innovative Technologies to Serve Humanity, ICCCE 2016, pp. 12–77, Dec. 2016, doi: 10.1109/ICCCE.2016.28.
V. C. Paterna, A. C. Augé, J. P. Aspas, and M. A. P. Bullones, “A bluetooth low energy indoor positioning system with channel diversity, weighted trilateration and kalman filtering,” Sensors, vol. 17, no. 12, Dec. 2017, doi: 10.3390/s17122927.
T. Dag and T. Arsan, “Received signal strength based least squares lateration algorithm for indoor localization,” Computers & Electrical Engineering, vol. 66, pp. 114–126, Feb. 2018, doi: 10.1016/J.COMPELECENG.2017.08.014.
K. Cengiz, “Comprehensive Analysis on Least-Squares Lateration for Indoor Positioning Systems,” IEEE Internet Things J, vol. 8, no. 4, pp. 2842–2856, Feb. 2021, doi: 10.1109/JIOT.2020.3020888.
Y. Zhuang, J. Yang, Y. Li, L. Qi, and N. El-Sheimy, “Smartphone-based indoor localization with bluetooth low energy beacons,” Sensors (Switzerland), vol. 16, no. 5, pp. 1–20, 2016, doi: 10.3390/s16050596.
Y. W. Ma, J. L. Chen, and Z. Z. Chen, “A high accuracy and efficiency indoor positioning system with visible light communication,” Transactions on Emerging Telecommunications Technologies, vol. 30, no. 2, pp. 1–17, 2019, doi: 10.1002/ett.3452.
M. Karakaya and G. Sengul, “Using Bluetooth Low Energy Beacons for Indoor Localization,” International Journal of Intelligent Systems and Applications in Engineering, vol. 5, no. 2, pp. 39–43, 2017.
J. Lovon-Melgarejo, M. Castillo-Cara, L. Orozco-Barbosa, and I. Garcia-Varea, “Supervised learning algorithms for indoor localization fingerprinting using BLE4.0 beacons,” 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1–6, 2017, doi: 10.1109/LA-CCI.2017.8285716.
L. Bai, F. Ciravegna, R. Bond, and M. Mulvenna, “A Low Cost Indoor Positioning System Using Bluetooth Low Energy,” IEEE Access, vol. 8, pp. 136858–136871, 2020, doi: 10.1109/ACCESS.2020.3012342.
B. Soewito, F. al Hassyr, and T. G. Geri Arisandi, “A Systematic Literature Review of Indoor Position System Accuracy and Implementation,” Proceedings - 2018 International Conference on Applied Science and Technology, iCAST 2018, pp. 358–362, Oct. 2018, doi: 10.1109/ICAST1.2018.8751623.
K. al Nuaimi and H. Kamel, “A survey of indoor positioning systems and algorithms,” 2011 International Conference on Innovations in Information Technology, IIT 2011, pp. 185–190, 2011, doi: 10.1109/INNOVATIONS.2011.5893813.
W. Sakpere, M. Adeyeye-Oshin, and N. B. W. Mlitwa, “A state-of-the-art survey of indoor positioning and navigation systems and technologies,” South African Computer Journal, vol. 29, no. 3, pp. 145–197, 2017, doi: 10.18489/SACJ.V29I3.452.
V. Bellavista-Parent, J. Torres-Sospedra, and A. Perez-Navarro, “New trends in indoor positioning based on WiFi and machine learning: A systematic review,” Jul. 2021, doi: 10.1109/IPIN51156.2021.9662521.
T. K. Geok et al., “Review of indoor positioning: Radio wave technology,” Applied Sciences (Switzerland), vol. 11, no. 1. MDPI AG, pp. 1–44, Jan. 01, 2021. doi: 10.3390/app11010279.
F. Zafari, A. Gkelias, and K. K. Leung, “A Survey of Indoor Localization Systems and Technologies,” IEEE Communications Surveys and Tutorials, vol. 21, no. 3, pp. 2568–2599, 2019, doi: 10.1109/COMST.2019.2911558.
B. Kitchenham, “Procedures for Performing Systematic Reviews,” 2004.
B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering - A systematic literature review,” Information and Software Technology, vol. 51, no. 1. pp. 7–15, Jan. 2009. doi: 10.1016/j.infsof.2008.09.009.
A. A. Khan, J. Keung, M. Niazi, S. Hussain, and A. Ahmad, “Systematic literature review and empirical investigation of barriers to process improvement in global software development: Client–vendor perspective,” Inf Softw Technol, vol. 87, pp. 180–205, Jul. 2017, doi: 10.1016/j.infsof.2017.03.006.
A. R. Yuly and H. Pradana, “Systematic Literature Review (SLR) Development of the IoT Industry in the Southeast Asian Region,” in 2020 3rd International Conference on Computer and Informatics Engineering, IC2IE 2020, Sep. 2020, pp. 460–466. doi: 10.1109/IC2IE50715.2020.9274619.
C. E. A. Bundak, M. A. Abd Rahman, M. K. Abdul Karim, and N. H. Osman, “Fuzzy rank cluster top k Euclidean distance and triangle based algorithm for magnetic field indoor positioning system,” Alexandria Engineering Journal, vol. 61, no. 5, pp. 3645–3655, May 2022, doi: 10.1016/j.aej.2021.08.073.
Universidad de Alcala?. Departamento de Electro?nica, GEINTRA (Organization), Institute of Electrical and Electronics Engineers, IEEE Geoscience and Remote Sensing Society, IEEE Instrumentation and Measurement Society, and Institute of Electrical and Electronics Engineers. Spain Section, “Integrating Wi-Fi and Magnetic Field for Fingerprinting Based Indoor Positioning System,” 2016.
T. T. Khanh, V. D. Nguyen, X. Q. Pham, and E. N. Huh, “Wi-Fi indoor positioning and navigation: a cloudlet-based cloud computing approach,” Human-centric Computing and Information Sciences, vol. 10, no. 1, Dec. 2020, doi: 10.1186/s13673-020-00236-8.
A. N. Nor Hisham, Y. H. Ng, C. K. Tan, and D. Chieng, “Hybrid Wi-Fi and BLE Fingerprinting Dataset for Multi-Floor Indoor Environments with Different Layouts,” Data (Basel), vol. 7, no. 11, p. 156, Nov. 2022, doi: 10.3390/data7110156.
J. Chen, S. Song, and H. Yu, “An indoor multi-source fusion positioning approach based on PDR/MM/WiFi,” AEU - International Journal of Electronics and Communications, vol. 135, Jun. 2021, doi: 10.1016/j.aeue.2021.153733.
Khan Mazzullah, Kai Dong Yang, and Gul Ubaid Haris, “Indoor Wi-Fi positioning algorithm based on combination of Location Fingerprint and Unscented KaIman Filter,” Proceedings of 2017 14th International Bhurban Conference on Applied Sciences & Technology (IBCAST), 2017.
T. Lines and A. Basiri, “Simulating and modeling the signal attenuation of wireless local area network for indoor positioning,” in Proceedings of the 2nd ACM SIGSPATIAL International Workshop on GeoSpatial Simulation, GeoSim 2019, Nov. 2019, pp. 9–15. doi: 10.1145/3356470.3365527.
A. El-Naggar, A. Wassal, and K. Sharaf, “Indoor positioning using WiFi RSSI trilateration and INS sensor fusion system simulation,” in ACM International Conference Proceeding Series, Oct. 2019, pp. 21–26. doi: 10.1145/3365245.3365261.
S. Gao and S. Prasad, “Employing spatial analysis in indoor positioning and tracking using Wi-Fi access points,” in Proceedings of the 8th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, ISA 2016, Oct. 2016, pp. 27–34. doi: 10.1145/3005422.3005425.
X. Han and D. He, “Research on Indoor Positioning Based on Fusion of WI-FI/PDR,” 2016, doi: 10.1145/3220162.3220.
T. Zheng, G. Hua, and B. Zhu, “An Indoor Wi-Fi Positioning Method Based on RSS Matrix Relevance,” in ACM International Conference Proceeding Series, Oct. 2020. doi: 10.1145/3424978.3424983.
A. Abusara, M. S. Hassan, and M. H. Ismail, “Reduced-complexity fingerprinting in WLAN-based indoor positioning,” Telecommun Syst, vol. 65, no. 3, pp. 407–417, Jul. 2017, doi: 10.1007/s11235-016-0241-8.
Z. Silvia, C. Martina, S. Fabio, and P. Alessandro, “Ultra Wide Band Indoor Positioning System: analysis and testing of an IPS technology,” Jan. 2018, vol. 51, no. 11, pp. 1488–1492. doi: 10.1016/j.ifacol.2018.08.292.
Y. Yan, B. Lin, D. Tang, Z. Zhang, Y. Huang, and J. Zhuang, “Design of the Fractal Bluetooth and UWB Positioning Beacon Antenna,” in ACM International Conference Proceeding Series, Nov. 2020, pp. 153–157. doi: 10.1145/3443467.3443745.
A. Duru, E. Sehirli, and I. Kabalci, “Ultra-Wideband positioning system using TWR and lateration methods,” in ACM International Conference Proceeding Series, Jun. 2018. doi: 10.1145/3234698.3234756.
P. Peng, C. Yu, Q. Xia, Z. Zheng, K. Zhao, and W. Chen, “An Indoor Positioning Method Based on UWB and Visual Fusion,” Sensors, vol. 22, no. 4, Feb. 2022, doi: 10.3390/s22041394.
E. Garcia, P. Poudereux, A. Hernandez, J. Urena, and D. Gualda, “A robust UWB indoor positioning system for highly complex environments,” Proceedings of the IEEE International Conference on Industrial Technology, vol. 2015-June, no. June, pp. 3386–3391, Jun. 2015, doi: 10.1109/ICIT.2015.7125601.
E. Essa, B. A. Abdullah, and A. Wahba, “Improve Performance of Indoor Positioning System using BLE,” 2019.
A. Koutris et al., “Deep Learning-Based Indoor Localization Using Multi-View BLE Signal,” Sensors, vol. 22, no. 7, Apr. 2022, doi: 10.3390/s22072759.
X. Du and Y. Xiong, “Multi-Beacon Integrated Indoor Positioning System,” in ACM International Conference Proceeding Series, Nov. 2020, pp. 991–995. doi: 10.1145/3443467.3443893.
S. C. Yeh, C. H. Wang, C. H. Hsieh, Y. S. Chiou, and T. P. Cheng, “Cost-Effective Fitting Model for Indoor Positioning Systems Based on Bluetooth Low Energy,” Sensors, vol. 22, no. 16, Aug. 2022, doi: 10.3390/s22166007.
Y. C. Pu and P. C. You, “Indoor positioning system based on BLE location fingerprinting with classification approach,” Appl Math Model, vol. 62, pp. 654–663, Oct. 2018, doi: 10.1016/j.apm.2018.06.031.
A. Ozer and E. John, “Improving the accuracy of bluetooth low energy indoor positioning system using kalman filtering,” Proceedings - 2016 International Conference on Computational Science and Computational Intelligence, CSCI 2016, pp. 180–185, Mar. 2017, doi: 10.1109/CSCI.2016.0041.
S. Memon, M. M. Memon, F. K. Shaikh, and S. Laghari, “Smart indoor positioning using BLE technology,” 4th IEEE International Conference on Engineering Technologies and Applied Sciences, ICETAS 2017, vol. 2018-January, pp. 1–5, Jan. 2018, doi: 10.1109/ICETAS.2017.8277872.
H. Xu, M. Wu, P. Li, F. Zhu, and R. Wang, “An RFID indoor positioning algorithm based on support vector regression,” Sensors (Switzerland), vol. 18, no. 5, May 2018, doi: 10.3390/s18051504.
H. Xu, Y. Ding, P. Li, R. Wang, and Y. Li, “An RFID indoor positioning algorithm based on bayesian probability and K-Nearest neighbor,” Sensors (Switzerland), vol. 17, no. 8, Aug. 2017, doi: 10.3390/s17081806.
Y. Zeng, X. Chen, R. Li, and H. Z. Tan, “UHF RFID Indoor Positioning System with Phase Interference Model Based on Double Tag Array,” IEEE Access, vol. 7, pp. 76768–76778, 2019, doi: 10.1109/ACCESS.2019.2921560.
C. Wang, Z. Shi, F. Wu, and J. Zhang, “An RFID indoor positioning system by using Particle Swarm Optimization-based Artificial Neural Network,” ICALIP 2016 - 2016 International Conference on Audio, Language and Image Processing - Proceedings, pp. 738–742, Feb. 2017, doi: 10.1109/ICALIP.2016.7846624.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ivan Alexander

This work is licensed under a Creative Commons Attribution 4.0 International License.